Abstract

Adaptation to environmental toxicants, such as metals, can affect population genetic diversity, both at neutral and selectable loci. At the transcriptional level, evolution of metal tolerance is possible due to the existence of polymorphisms in the cis-regulatory sequences of stress-responsive genes such as the metallothionein gene (mt). This study investigated the influence of cadmium adaptation on genetic diversity of soil-living Orchesella cincta (Collembola) populations in neutral (microsatellites and AFLP) and in functional (mt promoter) markers. Also, the influence of cis- and trans-acting factors on increased tolerance was addressed. No reduced genetic diversity was observed in two tolerant populations compared to five sensitive populations, either in neutral or in selectable markers. Extensive migration along with a large population size may explain the high genetic diversity measured. The metal-tolerant phenotype seems to be mostly influenced by genetic factors acting in cis on mt gene expression. The results suggest that certain promoter genotypes, which are found mainly or exclusively in Cd-tolerant populations, contribute to higher constitutive mt gene expression in individuals from these populations. However, more studies are needed to clearly unravel the influence of cis/trans-regulatory evolution in tolerant populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call