Abstract

In an approach to understand the influence of structural parameters of interfaces on calcification in biomineralisation, the distribution and conformation of head groups as active sites in an inert matrix were varied using two-component phospholipid model monolayers. Dimyristoylphosphatidic acid (DMPA) and dipalmitoylphosphatidylcholin (DPPC), respectively, were the active components, and methyl octadecanoate (MOD) was used as inactive matrix. Surface pressure–area isotherms provide evidence for a different distribution of the active components in the matrix. Formation of solid calcium carbonate with two-component monolayers on subphases containing aqueous CaCO 3 was observed in situ by Brewster angle microscopy, where CaCO 3 domains appear bright. Striking differences in kinetics and extent of CaCO 3 formation are observed between monolayers containing dimyristoylphosphatidic acid and those containing dipalmitoylphosphatidylcholin. The presence of κ-carrageenan in the subphase as a further active component resulted in partial inhibition of CaCO 3 formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.