Abstract

In order to predict oscillating loads on a structure, time-linearized methods are fast enough to be routinely used in design and optimization steps of a turbomachine stage. In this work, frequency-domain time-linearized Navier–Stokes computations are proposed to predict the unsteady separated flow generated by an oscillating bump in a transonic nozzle. The influence of regressive pressure waves on the aeroelastic stability is investigated. This case is representative of flutter of a compressor blade submitted to downstream stator potential effects. The influence of frequency is first investigated on a generic oscillating bump to identify the most unstable configuration. Introducing backward traveling pressure waves, it is then showed that aeroelastic stability of the system depends on the phase shift between the wave's source and the bump motion. Finally, feasibility of active control through backward traveling pressure waves is evaluated. The results show a high stabilizing effect even for low amplitude, opening new perspectives for the active control of choke flutter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.