Abstract

The double-sided and paddle-type nanostructures are promising for developing miniature accelerometers. In the present work, the impact of the accelerating force on the pull-in performance of the double-sided and paddle-type sensors fabricated from nanowire are investigated. The proximity force approximation (PFA) is employed to consider the effect of Casimir attraction in the theoretical model. Using the modified couple stress theory, the constitutive equations of the sensors are derived. The governing equations are solved by two different approaches, i.e. modified variational iteration method (MVIM), and finite difference method (FDM). The influences of the Casimir and accelerating forces, geometrical parameters and the size phenomenon on the pull-in parameters are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.