Abstract

Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys. The effects of electricity on fish have been widely studied and include injury or death (e.g., Sharber and Carothers 1988; Dwyer et al. 2001; Snyder 2003), physiological dysfunction (e.g., Schreck et al. 1976; Mesa and Schreck 1989), and altered behavior (Mesa and Schreck 1989). Much of this work was done to investigate the effects of electrofishing on fish in the wild. Because electrofishing operations would always use more severe electrical settings than those proposed for the pinniped barrier, results from these studies are probably not relevant to the work proposed by SRI. Field electrofishing operations typically use high voltage and amperage settings and a variety of waveforms, pulse widths (PW), and pulse frequencies (PF), depending on conditions and target species. For example, when backpack electrofishing for trout in a small stream, one might use settings such as 500 V pulsed DC, a PW of 1 ms, and a PF of 60 Hz. In contrast, the electrical barrier proposed by SRI will produce electrical conditions significantly lower than those used in electrofishing, particularly for PW and PF (e.g., PW ranging from 300-1,000 {micro}s and PF from 2-3 Hz). Further, voltage gradients (in V/cm) are predicted to be lower in the electric barrier than those produced during typical electrofishing. Although the relatively weak, pulsed DC electric fields to be produced by the barrier may be effective at deterring pinnipeds, little, if anything, is known about the effects of such low intensity electrical fields on fish behavior. For this research, we evaluated the effects of weak, pulsed DC electric currents on the behavior of adult steelhead and Pacific lamprey and the incidence of injury in steelhead only. In a series of laboratory experiments, we: (1) documented the rate of passage of fish over miniature, prototype electric barriers when they were on and off; (2) determined some electric thresholds beyond which fish would not pass over the barrier; and (3) assessed the incidence and severity of injury in steelhead exposed to relatively severe electrical conditions. The results of this study should be useful for making decisions about whether to install electrical barriers in the lower Columbia River, or elsewhere, to reduce predation on upstream migrating salmonids and other fishes by marine pinnipeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.