Abstract

Flow in the urban boundary layer is strongly influenced by the surface roughness, which is composed principally of isolated buildings or groups of buildings. Previous research has shown that the flow regime depends on the characteristic height of these obstacles (H), and the spacing between them (W). In reality, the urban boundary layer contains roughness elements with a wide range of length scales; in many practical situations these can be classified into large-scale roughness—buildings, or groups of buildings—and small-scale roughness, such as street furniture and elements on the facades and roofs. It is important to understand how the small-scale roughness might modify mass and momentum transfer in the urban boundary layer, but relatively little information is available concerning the potential interaction between large- and small-scale roughness elements in the different flow regimes. This problem has been studied using wind-tunnel experiments, by measuring vertical velocity profiles over a two-dimensional obstacle array, adding small-scale roughness elements to the top of larger parallel square bars. The experiments were performed for different cavity aspect ratios: the results show that the small-scale roughness increases the turbulence intensities and the momentum transfer when the large-scale obstacles are closely packed (H/W > 1) but it has very little effect for more widely-spaced obstacles (H/W < 1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.