Abstract
The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.