Abstract
The effects of the replacement of Ba2+ by off-center Mg2+ ions on the structural and electrical properties of BaZr0.1Ti0.9O3 ceramics were investigated. We show that the use of magnesium as A-site dopant favors the formation of the perovskite phase at a lower temperature and improves the densification of the ceramics. Combining XRD, SEM and electrical measurements, we determined that the solubility limit of Mg is ~ 2%. We show that Mg doping leads to a decrease in both the Curie temperature and remnant polarization of the ceramics. A 1% Mg content, however, enhances the room-temperature d33 piezoelectric coefficient due to the composition proximity to an impurity induced morphotropic phase boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.