Abstract

ABSTRACT In the framework of a quasi-molecular approach, the formation of hydrogen atom in the pre-recombination period of evolution of the Universe is analysed quantitatively. Calculations in an adiabatic multilevel representation enable estimates of probabilities of radiative transitions. The quasi-molecular mechanism of recombination allows the formation of hydrogen molecular ion, ${\mathrm{ H}_2}^+$, in its ground state. The probability of this process is comparable with the probability of the creation of atomic hydrogen. The participation of a second proton in the recombination increases the binding energy of an electron and decreases the rate of recombination of hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.