Abstract
Laser cutting is a suitable manufacturing method for generating complex geometries for sheet metal components. However, their cyclic load capacity is reduced compared to, for example, milled components. This is due to the influence of the laser-cut edge, whose characteristic features act as crack initiation sites, especially resolidified material in the form of burr and melt droplets. Since sheet metal components are often formed into their final geometry after cutting, another important factor influencing fatigue behavior is the effect of the forming process on the laser-cut edge. In particular, the effect of high degrees of deformation has not yet been researched in detail. Accordingly, sheets of AISI 304 were processed by laser cutting and pre-deformed. In the process, α’-martensite content was set to be comparable despite different degrees of deformation. It was found that deformation to high elongations caused a large part of the melt adhesions to fall off, but those still attaching were partially detached and thus formed an initial notch for crack initiation. This significantly lowered the fatigue strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Metals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.