Abstract

The present study aims to investigate the effect of a prefabricated-crown rolling process on the corrosion characteristic of the AZ31 magnesium alloy. Specimens made of the AZ31 alloy were rolled under various crown conditions, and their microstructure evolution and corrosion behavior were analyzed. The corrosion behavior was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion-current density of the AZ31 alloy with a side pressure of 37.5 % of the plate thickness of the precast convexity decreased from 3.79 × 10–6 A/cm2 to 1.80 × 10–6 A/cm2, and the difference between the edge and the middle of the AZ31 alloy was shortened from 2.05 × 10–6 A/cm2 to 1.14 × 10–6 A/cm2. The charge-transfer resistance also increased from 507.1 Ω·cm2 to 581.2 Ω·cm2. The improvement in the corrosion resistance is a result of the more stable corrosion products and microstructure refinement formed after the prefabricated-crown rolling process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.