Abstract

An experimental study of low temperature domain dynamics could provide information on a mechanism of domain wall motion at low temperatures in thin ferroelectric films. For this purpose we use a piezoresponse force microscopy (PFM) technique and investigate the 1800 ferroelectric domains growth in the temperature range 5 K – 295 K. Domains were created by applying a dc voltage pulses between an atomic force microscopy (AFM) tip and a bottom electrode of a thin epitaxial PbZr0.3Ti0.7O3 film. Two different types of tips were used, a semiconducting tip with dopant conductivity and a tip with metallic coating to clarify an influence of poling procedure on the domain dynamics. Created domains were then visualized and their in-plane sizes were measured with out-of-plane PFM. Dependences of lateral domain size on the duration and amplitude of dc voltage pulse were obtained. Received experimental dependences were then fitted with logarithmic function with good accuracy. This circumstance indicates on the thermally activated mechanism of domain growth and formation. Temperature dynamics of the 1800 ferroelectric domains growth does not depend on the AFM tip used in a poling procedure what allows us to conclude that the voltage transfer to the ferroelectric film does not significantly depend on the tip-film local contact properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.