Abstract

In this paper the solutions of the zero-sound dispersion equation in the random phase approximation (RPA) are considered. The calculation of the damped zero-sound modes \omega_s(k) (complex frequency of excitation) in the nuclear matter is presented. The method is based on the analytical structure of the polarization operators \Pi(\omega,k). The solutions of two dispersion equations with \Pi(\omega,k) and with Re(\Pi(\omega,k)) are compared. It is shown that in the first case we obtain one-valued smooth solutions without "thumb-like" forms. Considering the giant resonances in the nuclei as zero-sound excitations we compare the experimental energy and escape width of the giant dipole resonance (GDR) in the nucleus A with \omega_s(k) taken at a definite wave vector k=k_A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.