Abstract

To investigate microtensile bond strength and characterization with the novel lithium disilicate coating technique compared to conventional air abrasion. Eight zirconia blocks were fabricated and assigned to two groups (n = 4 each): (1) Lithium disilicate coating followed by hydrofluoric acid etching and Monobond N Primer (LiDi group); and (2) alumina air abrasion (MUL group). For each group, two identically pretreated zirconia blocks were bonded together with Multilink Speed Cement and cut into 30 stick-shaped specimens (1 × 1 × 9 mm3). The 120 specimens were stored in water for 24 hours and assigned to one of three groups (n = 20/group): (1) short-term storage for 24 hours; (2) thermocycling for 5,000 cycles; and (3) thermocycling for 10,000 cycles. A microtensile bond strength test was performed and evaluated. The bond strength results were analyzed using two-way ANOVA followed by one-way ANOVA and Tukey HSD (α = .05). Energy-dispersive x-ray spectroscopy (EDS), Fourier-transform infrared (FTIR), x-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), and scanning electron microscopy (SEM) were used for chemical, crystalline phase, and failure mode analyses. The MUL groups recorded higher bond strength than the LiDi groups. Thermocycling significantly decreased the bond strength in both groups. Chemical analyses suggested that the lithium disilicate layer underwent hydrolysis, which compromised long-term bond strength. The bond between composite cement and alumina-abraded zirconia performed better than that with the lithium disilicate coating technique. Int J Prosthodont 2023;36:172-180. doi: 10.11607/ijp.6744.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call