Abstract
The paper presents the results of research work to assess the thermal conductivity of mortar incorporating a novel carbon-based nano-material (CBN). The data from the laboratory tests served as the starting point in training an artificial neural network (ANN) based on the Levenberg–Marquardt backpropagation algorithm that was used to predict the values of the thermal conductivity at later ages. The used CBNs were essential precursors of multi-walled carbon nano-tubes but different from their counterparts in the fact that they were capped at the ends. This configuration should result in lower surface tension and should prevent the bundling even without the use of surfactants and sonication. The obtained results show that the mortar mixes with CBN exhibit higher values for the thermal coefficient at early ages compared to the reference mix, even at very low percentages of CBN by weight of cement. The ANN is able to accurately predict the experimental results both at 28 days and at later ages. The obtained results should serve as the starting point for further investigations into the microstructure of cement-based materials enhanced with CBNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.