Abstract

The aim of the study was to evaluate the influence of a newly-synthesised 5-oxo-1,2,4-triazyne derivative on the antioxidant status and performance of turkey hens. The experiment was conducted on sixweek old Big-6 turkey hens, divided equally into four groups (60 birds/group). The treatments were: T0 – control (no triazyne supplement) and T15, T30, T45: 5-oxo-1,2,4-triazyne supplementation at 15, 30 and 45 µg/kg BW/day, respectively. The additive was administered over a period of eight weeks. A two-week break with no triazyne supplementation was given in the middle of that period. The performance indices were body weight, feed conversion ratio and the Index of Rearing Effectiveness (WEO). The antioxidant parameters were superoxide dismutase, glutathione peroxidase and catalase activity in erythrocytes and copper, iron and zinc concentrations in plasma. None of these measurements were affected by any of the supplementation treatments. However, after four weeks the supplementation of the 5-oxo-1,2,4-triazyne derivative caused a significant increase in superoxide dismutase activity in the erythrocytes of the hens, and after 10 weeks, only at the highest dose of supplementation. After four weeks of supplementation, the group that received the highest dose of the additive showed an increase in total antioxidant potential (FRAP) in the plasma as well as in its components, i.e. uric acid and vitamin C. After 10 weeks of supplementation a decrease was recorded in the FRAP value, as well as in uric acid, ascorbic acid and Cu concentrations in plasma. The observed growth of enzymatic and non-enzymatic antioxidants may indicate a mobilization of the antioxidant defence system. However, at the end of experiment, the significant decrease in the plasma concentration of the nonenzymatic antioxidants suggests that the body reserves were depleted.

Highlights

  • In an optimal functioning organism there exists a balance between oxidation reactions and antioxidant defence mechanisms

  • In the hens that received the highest level of the 5-oxo-1,2,4-triazyne derivative, an increase (P

  • Changes in FRAP correlated with changes in the plasma concentration of its components, viz. vitamin C and uric acid

Read more

Summary

Introduction

In an optimal functioning organism there exists a balance between oxidation reactions and antioxidant defence mechanisms. Stress factors such as low or high ambient temperatures, transportation, crowding, and nutritional factors such as low digestible feed, vitamin E and Se deficiencies, the presence of heavy metals, mycotoxins and other toxicants, may have a negative impact on this antioxidant/prooxidant balance and induce oxidative stress (Mitchell & Kettlewell, 1994; Rajman et al, 2006; Truchliński et al, 2007). It has been experimentally proven that some compounds such as amidrazone derivatives may stimulate antioxidant defence reactions. Amidrazone derivatives, such as the newly-synthesised 5-oxo-1,2,4-triazyne and 1,2,4-triazole derivative have a multidirectional pharmacological activity. Research suggested that they possess antiviral, antibacterial (against 15 bacterial strains, both Gramand Gram+), antifungal (against Candida albicans), analgesic, anti-inflammatory

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.