Abstract

Insecticidal neonicotinoid seed treatments are a common agricultural insect pest management strategy; however, effects on nontarget pests and omnivorous arthropods are understudied. We used a series of experiments to evaluate impacts of the neonicotinoid seed treatment thiamethoxam on densities of herbivorous twospotted spider mites (Tetranychus urticae Koch [Acari: Tetranychidae]) and feeding behavior of western flower thrips (Frankliniella occidentalis Pergande [Thysanoptera: Thripidae]), an omnivore that feeds on spider mite eggs but is also a significant plant pest. Spider mite densities were higher on neonicotinoid-treated soybeans, but only when mites were not spatially confined. We then examined how availability of thiamethoxam-treated food items (i.e., eggs from spider mites reared on treated soybeans, soybean leaf discs, or a combination of the two), and previous exposure to thiamethoxam-treated soybean impacted thrips feeding. Regardless of the presence of leaf tissue, thrips consumed fewer spider mite eggs laid by females reared on treated soybeans, suggesting spider mite eggs can serve as poisoned prey. Overall, thrips consumed less treated soybean leaf tissue, and thrips on treated leaf discs had a lower percentage of herbivorous feeding events and consumed more nontreated spider mite eggs, indicating a dietary shift from herbivory to predation. The neonicotinoid status of spider mite eggs and prior exposure of thrips also caused shifts in the number and size of leaf scars, likely as a result of altered foraging behavior and/or movement. Shifts between herbivory and predation have implications for thrips damage, virus transmission, and pest management, especially in systems with mixtures of nontreated and neonicotinoid-treated plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call