Abstract
The role of a methyl group in intramolecular vibrational energy redistribution (IVR) of the hydrogen-bonded adenine-thymine base pair has been studied using classical dynamics procedures. Energy transferred to the doorway bond thymine-NH from the vibrationally excited H2O(v) efficiently redistributes among various bonds of the base pair through vibration-to-vibration coupling, depositing a large fraction of the available energy in the terminal bond adenine-NH. On the other hand, the extent of energy flow in the reverse direction from the excited adenine-NH to thymine-NH is insignificant, indicating IVR in adenine-thymine resulting from the intermolecular interaction with a vibrationally excited H2O molecule, is direction-specific. The unidirectional flow is due to the coupling of stretch-torsion vibrations of a methyl group with conjugated bonds on the thymine ring, when the methyl rotor is present and is adjacent to the vibrationally excited thymine-NH. The insignificance of energy flow from the terminal-to-terminal bond in the reverse direction is attributed to the absence of a methyl group on the adenine moiety, even though the molecule has many CC and CN bonds coupled to their neighbors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.