Abstract

Abstract The effect of urban areas on weakly forced precipitation systems has been studied extensively. However, interactions between urban areas and strongly forced convection, such as supercells, remain relatively unexamined. The present study uses simulations of a supercell to quantify the impacts of a large plains urban area on the evolution and strength of a supercell. An initial ensemble of simulations (CTRLE) of a supercell over homogeneous land use is performed using the WRF-ARW Model. Additionally, 108 simulations are conducted in which the land-use pattern of Dallas–Ft. Worth, Texas, is placed inside the model domain, with the city center shifted to be in or near the path of the supercell. Simulations with urban areas are compared to CTRLE, with the aid of hierarchical clustering analysis to form statistically similar groups of simulations. Clustering analyses identify groups of ensemble members with closely located urban areas that have similar patterns of 0–1-km updraft helicity and near-surface minimum temperature and maximum wind speeds. Comparison of these groups of ensemble members to CTRLE suggests the urban area has a significant impact on storm characteristics, particularly on low-level rotation and mesocyclone track. Simulations where the storm passes to the north of or directly over the city center late in its life cycle deviate most significantly from CTRLE. In these members, low-and midlevel mesocyclone strength increases, and the mesocyclone tracks farther south when compared to CTRLE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.