Abstract

Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.