Abstract

Inlet conditions strongly affect the dynamical parameters of a two-phase slug flow. A series of experiments were carried out, in a 6m long Plexiglas pipe having internal diameter 74 mm, to investigate the influence of gas bubble on the flow dynamics inside the slugy body of a unit slug. The pipe was kept inclined at an elevation of 1.160 to consider the terrain slugging mechanism. An optical diagnostic technique, Particle Image Velocimetry (PIV) was employed at a point 3.5m from the inlet to measure the instantaneous velocity fields of the flow for each case. Single-phase liquid pipe flow and the slugy body of the two-phase slug flow are the targeted sections for study and comparison. Velocity components, turbulence intensity and average volume flux are measured and compared. The effect of gas bubble on the liquid Reynolds number is also considered. It is noticed that by increasing the gas flow rate velocity, average flux and average kinetic energy increases dramatically in a slugy body of a slug flow regime. The results are also compared with the single phase liquid flow having same liquid flow rate. Moreover it is noticed that the increase in average volume flux in a slugy body for lower liquid flow rates are more significant as compared to the higher liquid flow rates by increasing gas rate. This shows that slug can be helpful in oil transportation in terrain oil fields for lower liquid flow rates as it creates more fluctuations and vibrational forces for higher liquid flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call