Abstract

Plants can be contaminated with cyanobacterial toxins during spray irrigation of lake water containing toxic cyanobacteria. Here, long-term effects of cyanobacterial crude extract (containing microcystin-LR) on the growth and physiology of different spinach (Spinacia oleracea) variants under semifield conditions were investigated. Changes in antioxidative enzyme activities, and in glutathione, ascorbate and tocopherol contents were investigated to assess the reaction of the antioxidative defence systems in spinach to toxin exposure. In addition to severe morphological effects, such as growth inhibition and chlorosis, the generation of oxidative stress was observed at the cellular level. In response to the negative effects of oxidative stress, plants stimulated an antioxidative system consisting of an enzyme network with superoxide dismutases, peroxidases, catalases, glutathione S-transferases and glutathione reductases, as well as a set of low-molecular-weight antioxidants, including glutathione, ascorbate and tocopherols. Exposure of spinach to cyanobacterial crude extract affected germination, growth and morphology, as well as antioxidative response parameters. Different variants of the same plant reacted in different ways to certain toxicants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.