Abstract
Sertoli cells metabolize glucose, converting it to lactate that is used by developing germ cells for their energy metabolism. Androgens and oestrogens have metabolic roles that reach far beyond reproductive processes. So, the main purpose of this study was to examine the effect of sex steroid hormones on metabolite secretion/consumption in human Sertoli cells. Human Sertoli cell-enriched primary cultures were maintained in a defined medium for 50 h and glucose, pyruvate, lactate and alanine variations were determined using (1) H-NMR spectra analysis, in the absence or presence of 100 nm 17β-estradiol (E(2) ) or 100 nm 5α-dihydrotestosterone (DHT). The mRNA expression levels of glucose transporters, lactate dehydrogenase and monocarboxylate transporters were also determined using semi-quantitative RT-PCR. Cells cultured in the absence (control) or presence of E(2) consumed the same amounts of glucose at similar rates during the 50 h. During the first 15 h of treatment with DHT, glucose consumption and glucose consumption rate were significantly higher. Nevertheless, DHT-treated cells secreted a significantly lower amount of lactate than control and E(2) -treated cells. Such a decrease was concomitant with a significant decrease in lactate dehydrogenase A mRNA levels after 50 h treatment in DHT-treated groups. Finally, alanine production was significantly increased in E(2) -treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells on those conditions. These results support the existence of a relationship between sex steroid hormones action and energy metabolism, providing the first assessment of androgens and oestrogens as metabolic modulators of human Sertoli cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.