Abstract

Within the resistive magnetohydrodynamic model, high-Lundquist number reconnection layers are unstable to the plasmoid instability, leading to a turbulent evolution where the reconnection rate can be independent of the underlying resistivity. However, the physical relevance of these results remains questionable for many applications. First, the reconnection electric field is often well above the runaway limit, implying that collisional resistivity is invalid. Furthermore, both theory and simulations suggest that plasmoid formation may rapidly induce a transition to kinetic scales, due to the formation of thin current sheets. Here, this problem is studied for the first time using a first-principles kinetic simulation with a Fokker-Planck collision operator in 3D. The low-β reconnecting current layer thins rapidly due to Joule heating before the onset of the oblique plasmoid instability. Linear growth rates for standard (ky = 0) tearing modes agree with semicollisional boundary layer theory, but the angular spectrum of oblique (|ky|>0) modes is significantly narrower than predicted. In the nonlinear regime, flux-ropes formed by the instability undergo complex interactions as they are advected and rotated by the reconnection outflow jets, leading to a turbulent state with stochastic magnetic field. In a manner similar to previous 2D results, super-Dreicer fields induce a transition to kinetic reconnection in thin current layers that form between flux-ropes. These results may be testable within new laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.