Abstract
Bioaugmentation has been frequently proposed in wastewater and soil treatment to remove toxic aromatic compounds. The performance of bioaugmentation is affected by a number of biological and environmental factors, including the interaction between the target pollutant and the augmented bacterial cells. In this study, using Comamonas testosteroni and 3-chloroaniline (3-CA) as the model organism and target pollutant, we explored the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our results showed that the exposure to 3-CA greatly reduced the retention of C. testosteroni cells in packed-bed bioreactors (from 22% to 15% after three pore volumes), which could be attributed to the altered bacterial motility and cell surface hydrophobicity. To further understand the molecular mechanisms, we employed an integrated genomic and transcriptomic analysis to examine the influence of 3-CA on the expression of genes important to the biofilm lifestyle of C. testosteroni We found that exposure to 3-CA reduced the intracellular c-di-GMP level by downregulating the expression of genes encoding c-di-GMP synthases and induced massive cell dispersal from the biofilms. Our findings provide novel environmental implications on bioaugmentation, particularly in biofilm reactors, for the treatment of wastewater containing recalcitrant industrial pollutants. Bioaugmentation is a bioremediation approach that often has been described in the literature but has almost never been successfully applied in practice. Many biological and environmental factors influence the overall performance of bioaugmentation. Among these, the interaction between the target pollutant and the augmented bacterial cells is one of the most important factors. In this study, we revealed the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our findings provide novel environmental implications on bioaugmentation for the treatment of wastewater containing recalcitrant industrial pollutants; in particular, the exposure to toxic pollutants may reduce the retention of augmented organisms in biofilm reactors by reducing the c-di-GMP level, and approaches to elevating or maintaining a high c-di-GMP level may be promising to establish and maintain sustainable bioaugmentation activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.