Abstract

Nanocrystalline (nc) Cu and Cu–1% Nb bulk materials are synthesized using a combination of cryogenic and room temperature ball milling. The grain size values of these in situ consolidated Cu and Cu–1% Nb, determined using transmission electron microscopy, are found to be 22 nm and 18 nm, respectively. In this investigation, isochronal heat treatments are performed for 1 h to establish grain size and microstructural changes as a function of temperature. The annealing of nc Cu–1% Nb at a temperature of 1073 K reveals a slight increase in the average grain size from 18 to 45 nm. The grain size of nc Cu, however, increases from 22 nm to about 3 μm after annealing at the same conditions. The present results indicate that solute entrapment plays a major role in thermal stability of the high purity contaminant‐free Cu with the addition of only 1 at% Nb after annealing for 1 h up to a homologous temperature of 0.8. Kinetic stabilization via clustering of Nb atoms on the grain boundaries and the triple junctions is also observed after annealing at high temperature for longer times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call