Abstract

A composite lubricating system that combines solid and liquid lubrication can create a synergistic effect by leveraging the strengths of both types of lubricants. Solid lubrication coatings possess advantageous load-bearing abilities and exhibit low volatility. By adopting this approach, the system retains the merits of solid lubrication while simultaneously harnessing the advantages of liquid lubrication. The unique properties of diamond-like carbon coatings (DLCs) offer the potential to create binding locations for lubricant additives by introducing dopant elements that have a high affinity with additives. In the present work, the combined use of europium-doped diamond-like carbon (Eu-doped DLC) with varying atomic concentrations of the dopant element (1.7 at. % and 2.4 at. %) and gadolinium-doped diamond-like carbon (Gd-doped DLC) with different atomic concentrations of the dopant element (1.7 at. % and 2.3 at. %) was studied alongside a pure DLC coating and the incorporation of an ionic liquid (IL) additive in a tribological block-on-ring system. The focus was on the 1-Ethyl-3-methylimidazolium diethylphosphate ionic liquid with a concentration of 1 wt. % in polyalphaolefin (PAO) 8. Among the investigated pairs, the coefficient of friction (CoF) of 1.7 at. % Eu-doped DLC coupled with the IL was the smallest in boundary, mixed, and elastohydrodynamic lubrication regimes. Quantification of wear was challenging due to minimal and localized wear on the DLC coating surfaces. The decrease in friction within the boundary lubrication regime underscores the promise of mechanical systems that integrate 1.7 atomic percent Europium-doped diamond-like carbon coatings with ionic liquids (IL). This study presents a compelling avenue for future scholarly exploration and research efforts focused on reducing friction and improving the efficiency of moving components, particularly in situations where tribological properties exert a substantial influence

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call