Abstract
The carrier microscopic transport process of uniaxial strained Si n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) has been analyzed under γ-ray radiation. The variation of oxide-trapped charge (Not) and interface-trap charge (Nit) with the total dose has also been investigated. An analytical model of hot carrier gate current of the uniaxial strained Si nanometer scale NMOSFET has been developed with the degradation due to the total dose irradiation taken into consideration. Based on the model, numerical simulation has been carried out by Matlab. The influence of the total dose, geometry and physics parameters on gate current was simulated. Furthermore, to evaluate the validity of the model, the simulation results were compared with experimental data, and good agreements were confirmed. Thus, the proposed model provides good reference for research on irradiation reliability and application of strained integrated circuit of uniaxial strained Si nanometer scale n-channel metal-oxide-semiconductor field-effect transistor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.