Abstract

The effect of γ-irradiation in vacuum and air followed by HTSG of polypropylene (PP) is studied using both infrared (IR) spectroscopy and computational chemistry at the correlated G3(MP2)B3 molecular orbital theory level. γ-irradiation of PP in vacuum was found to primarily induce unsaturation and hydroxyl formation from residual system water whereas γ-irradiation of PP in air oxidizes the polymer and degrades the backbone in a thin layer due to oxygen permeability limitations as supported by the computational thermodynamics results. HTSG of the irradiated PP produced smaller particles than un-irradiated PP. HTSG of the irradiated PP led to a decrease in the IR band intensity from degradation due to a nominal homogenization of the pellet. HTSG of air irradiated PP led to a reduction in IR vibrational band intensity from oxidation due to thermal degradation. High-temperature shear grinding of γ-irradiated PP produces variable chemical and physical composition depending on irradiation input dose and environmental conditions. The combination of γ-irradiation and HTSG may be of benefit in recycling polypropylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.