Abstract
The Cu-1.0% Cr-0.1% Zr alloy in a solid solution state was investigated by ageing treatments at different temperatures and holding times. The structure and performance were characterized and tested by using X-ray diffraction (XRD), a transmission electron microscope (TEM), a universal material testing machine, and an eddy conductivity detector. The influence laws of ageing temperature and the holding time on the structures and properties of the Cu-Cr-Zr alloy were analyzed. Results demonstrated that, with the increase in ageing temperature and holding time, the percentage and size of the Cr precipitated phase increased, and the dislocation density decreased. The tensile strength first increased to the peak value and then decreased. The electrical conductivity increased and the amplitude decreased. The tensile strength of the alloy reached the peak (359 ± 2 MPa) after ageing at 450 °C for 60 min, and the electrical conductivity was 91.9 ± 0.7% IACS. In addition, in the ageing precipitation process, the chromium precipitated phase had face-centered cubic structure (FCC) and body-centered cubic structure (BCC) structures, and the FCC Cr phase can be transformed into a BCC Cr phase. FCC Cr, BCC Cr, and Cu3Zr precipitation phases maintained different orientation relationships with the Cu substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.