Abstract
The problem of influence maximization is a classic subject to study in the field of network science. It is about finding the top-k important individuals in a network for message dissemination under a particular diffusion model. Each year a number of new research papers are published concerning the same issue. However, most of these methods can only operate in situations where the whole graph is visible to the algorithm which is an unrealistic assumption in many cases. There are many cases where the induced network model of a natural phenomenon is associated with missing links. Discarding these links will lead to serious drawbacks in the result. In this work, we have extended the current state of the art influence maximization algorithms by adding a link prediction heuristic step prior to the actual run of the algorithm. For the purpose of link prediction, we have used exponential random graph models also known as ERGM due to their probabilistic link prediction capabilities. We have shown that this heuristic can significantly improve the effectiveness of influence maximization algorithms and in a diffusion scenario we can have a larger number of infected nodes using the seed nodes of the influence maximization algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.