Abstract

The notion of influence among people or organizations has been the core conceptual basis for making various decisions. With the increasing availability of datasets in various domains such as social networks and digital healthcare, it becomes more feasible to apply complex analytics on influence networks. In this paper, we present a comprehensive approach to managing influence networks using a set of extended graph models, called graph-based OLAP (GOLAP). The design space for GOLAP is defined by the incorporation of node types (i.e., colors), weights on relationships (i.e., edges), constraints on the number of nodes for a certain node type and constraints on the percentage of nodes for a certain node type. We begin with defining a method to find a strongest influence path (SIP) which is the strongest path from the source node to the target node. We can answer complex queries on influence networks such as “find an SIP with t nodes of color c” or “find an SIP with t% nodes of color c.” Based on the SIP model, we present a set of influence maximization methods which find a set of s seed nodes that can influence the whole graph maximally with various constraints such as having ‘t nodes of color c’. We also address methods for optimizing the time complexity of the analytics algorithms. We apply heuristic-based and graph reduction-based methods to reduce the time complexity. In addition to proving the proposed methods, we present the result of our implementation on the methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.