Abstract

This manuscript brings the derivation of influence functions for a three-dimensional full-space under bilinearly-distributed time-harmonic loads. The differential equations describing the medium are decomposed in terms of uncoupled vector fields. A double Fourier transform allows the system of equations to be solved algebraically in the transformed space, where the bilinear-loading boundary conditions are imposed. The resulting displacement and stress solutions are presented in terms of double improper integrals to be evaluated numerically. The manuscript brings selected results from the evaluation of these solutions. These influence functions can be used in boundary element models of elastodynamic problems to yield computationally-efficient solutions and improved representation of sharply-varying contact traction fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call