Abstract

BackgroundThe most significant differences of high tibial osteotomy (HTO) were found in terms of plate length, and this was related to number of holes distal region of the plate below wedge. The purpose of this study is to evaluate the biomechanical effects of three different designs medial opening wedge plates. HypothesisThe design of the HTO plate influenced the outcome of the biomechanics. MethodsThe HTO model was simulated using finite element (FE) model. This FE investigation included three types of loading conditions corresponding to the loads used in the experimental study for model validation and model predictions for clinically relevant loading scenarios. The average stress and contact stress were evaluated. ResultsThe highest average stress was observed in the TomoFix. Conversely, the stress on the bone declined in the order of Puddu, Maxi and TomoFix plates. The micromotion in the wedge displayed a similar trend to the stress on bone. The highest and lowest contact stresses on the medial meniscus were observed in the Puddu and TomoFix plate, respectively. However, an opposite trend was observed in the lateral meniscus. The contact stress on medial and lateral menisci decreased and increased, respectively, in all three different plates when compared to those in the intact model. DiscussionThe TomoFix plate exhibited the highest stability relative to the micromotions of the wedge. However, in terms of the stress on the bone and plates, a stress-shielding effect could exist in the TomoFix plate. Additionally, the contact stress on the articular surface suggested that a complicated relationship could exist with respect to the plate design. Level of evidenceIV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.