Abstract
The aim of this paper is to introduce generalized symmetric linear models (GSLMs) in the same sense of generalized linear models (GLMs), in which a link function is defined to establish a relationship between the mean values of symmetric distributions and linear predictors. The class of symmetric distributions contains various distributions with lighter and heavier tails than normal and hence offers a more flexible basis for analyzing symmetric data. An iteratively reweighed least squares (IRLS) algorithm is derived to obtain maximum likelihood estimates. The local influence methodology is applied to study the sensitivity of the maximum likelihood estimates under some usual perturbation schemes, such as case-weight, response variable, continuous explanatory variable and scale parameter perturbations. We also discuss generalized leverage and residual analysis. Finally, an illustration is given in which the methodology developed in this paper is applied to a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.