Abstract

Ferrihydrite is usually used as a remedy for arsenic (As)-contaminated soil due to its strong affinity and large specific surface area. However, its noncrystalline phase makes it unstable in long-term applications in the soil. In this study, a soil incubation experiment was designed using the diffusive gradient in thin film (DGT) technique and spectral techniques to investigate the fate of As-bearing ferrihydrite [As(V)-Fh] after long-term incubation at different soil water holding capacities (SWHCs). After As(V)-Fh (0.05 and 0.005 As/Fe molar ratio) was incubated in soil for 360 days, both DGT-derived labile As and Fe were released at 70% SWHC and 120% SWHC into the soil (at a vertical depth of 12 cm). The concentrations of DGT-As and DGT-Fe increased with incubation time and were greater at 120% SWHC. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that As(V)-Fh gradually transformed into hematite and goethite after 360 days of incubation. Goethite was mainly found in the 120% SWHC treatment after 180 days. Hematite and goethite formation rates were greater in the 120% SWHC treatment and in the bottom soil layer. Mechanistic analysis based on X-ray photoelectron spectroscopy (XPS) revealed that the variation in soil pH and the formation of Fe(II) (under flooded water conditions) are the two key factors promoting the formation of hematite (dehydrogenation and dehydration) and goethite (As(V)-Fh dissociation and reorganization). The As release mainly occurred due to the loss of adsorption sites. Thus, it is recommended that ferrihydrite be applied in paddy–dry rotations or dry-field patterns to effectively avoid the loss of As(V)-Fh in long-term-saturated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call