Abstract
In this study, disulfide bonds between the interfacial protein film formed on the lipid particles and the protein in ovalbumin emulsion gels were blocked with 0, 1, 3, 5 and 10 mM of the N-ethylmaleimide (NEM) to explore the influence and effect mechanism of disulfide bonds between the interfacial proteins on the physicochemical properties, microstructure, and protein structure of sunflower oil–ovalbumin emulsion gels. Ovalbumin emulsion gels with NEM-treated ovalbumin emulsion (N-OE) had lower hardness, free sulfhydryl content, water holding capacity (WHC), and surface hydrophobicity, but higher spin−spin relaxation time (T2) than ovalbumin emulsion gels with NEM-treated ovalbumin substrate solution (N-OSS). In addition, N-OE and N-OSS had lower hardness, free sulfhydryl content, WHC and surface hydrophobicity, as well as a more coarse and disordered microstructure than non-NEM treated ovalbumin emulsion gel (control group). The free sulfhydryl content, hardness, WHC, and surface hydrophobicity of the ovalbumin emulsion gels all decreased as the NEM concentration rose (p < 0.05), whereas the amide A band changed to higher wave numbers. These results collectively indicated that the reduction of disulfide between the interfacial layer and the proteins inhibited the hydrophobic effect, the formation of hydrogen bonds, and prevented the formation of larger aggregates. Thus the disulfide bonds between the interfacial proteins contribute to the hardness enhancement and water stabilization of the ovalbumin gel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.