Abstract

Electric heating serves as a major cold-proof measure because engineering equipment often loses efficacy in harsh weather conditions in a polar environment. Because Convective heat transfer is the key issue to solve the cold-proof design, this paper analyzes convective heat transfer of tube and plate in the constant heat flow heating mode. According to fluent numerical simulation analysis with a wind speed of 0–40 m/s and a temperature of −40°C–0°C, both an increase in wind speed and a decrease in temperature would cause the growth of the convective heat transfer coefficient of circular tubes and flat plates, Wind speed displayed a more significant impact on convective heat transfer. In a low-temperature laboratory, a model experiment of convective heat transfer was carried out to validate the reliability of the numerical simulation. Last, a prediction model for convective heat transfer coefficient of circular tubes and flat plates in polar environment was developed using numerical and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call