Abstract

It has been suggested that Glauber (inflow) and Sznajd (outflow) zero-temperature dynamics for the one-dimensional Ising ferromagnet with nearest-neighbor interactions are equivalent. Here we compare the two dynamics from the analytical and computational points of view. We use the method of mapping an Ising spin system onto the dimer RSA model and show that already this simple mapping allows us to see the differences between inflow and outflow zero-temperature dynamics. Then we investigate both dynamics with synchronous, partially synchronous, and random sequential updating using the Monte Carlo technique and compare both dynamics in the number of persistent spins, clusters, mean relaxation time, and relaxation time distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.