Abstract

Abstract Alteration of the flow characteristics in coronary vessels is correlated with coronary heart disease (CHD). In particular, wall shear stress (WSS) appears to be a hemody-namic key factor in the genesis of CHD. Since computational fluid dynamics (CFD) is a well-known method for the inves-tigation of WSS, it may be a valuable tool for the prediction of CHD. Latest imaging techniques, such as optical coher-ence tomography (OCT) in conjunction with angiography deliver precise 2D data sets of patient-specific vessel geome-try, which can be used for CFD analysis. Current CFD stud-ies utilize patient-specific geometries, but are lacking well defined physiologic inflow conditions. In this study, we present an inflow mapping method for patient-specific arterial vessels, which is capable of consider-ing the influence of bifurcations located proximal of the OCT-data set. At first, the patient-specific vessel was recon-structed. For this purpose the OCT-based vessel cross sec-tions were arranged along an angiographic based vessel pathway. Secondly, we simulated the flow field in a generic bifurcation model by means of CFD. Thereafter the flow field of a side branch was extracted and transferred (mapped) to the inlet of the patient-specific vessel. To evaluate the influence of the physiological inlet the WSS distribution of the same patient-specific vessel was calculated using an axial-symmetric inflow condition. Analy-sis of the simulation data yielded deviations of the WSS distribution in the proximal vessel segment. A bifurcation, located upstream of the relevant vessel segment strongly affects the flow in the OCT-based vessel reconstruction and has a strong influence on the results of the numerical analy-sis. Therefore, it is important to implement not only the pa-tient-specific geometry, but also an inlet boundary condition adapted to the upstream velocity distribution reflecting the actual proximal flow situation of the vessel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.