Abstract
Abstract Submerged annular viscoplastic jet flows were studied numerically within the steady laminar flow regime. The impacts of inner-to-outer annular nozzle diameter ratio, and yield number, for uniform and fully-developed inflow conditions, were investigated. The extent of the outer recirculation region and recirculation intensities of both the central and outer regions were found to substantially diminish with the yield number, resulting in the elimination of recirculation throughout the whole flow field at high yield numbers. The axial penetration of the jet decreases with both the yield number and the annular diameter ratio. The impact of inflow conditions on the flow structure and decay characteristics of the jet are more pronounced at low yield numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.