Abstract
Infliximab, an anti-tumour necrosis factor (TNF)-α monoclonal antibody, has been approved in chronic inflammatory disease, including rheumatoid arthritis, Crohn's disease and ankylosing spondylitis. This study aimed to investigate and characterise target-mediated drug disposition of infliximab and antigen mass turnover during infliximab treatment. In this retrospective cohort of 186 patients treated with infliximab for rheumatoid arthritis, Crohn's disease or ankylosing spondylitis, trough infliximab concentrations were determined from samples collected between weeks 0 and 22 after treatment initiation. Target-mediated pharmacokinetics of infliximab was described using target-mediated drug disposition modelling. Target-mediated elimination parameters were determined for rheumatoid arthritis and Crohn's disease, assuming ankylosing spondylitis with no target-mediated elimination. The quasi-equilibrium approximation of a target-mediated drug disposition model allowed a satisfactory description of infliximab concentration-time data. Estimated baseline TNF-α amounts were similar in Crohn's disease and rheumatoid arthritis (R0 = 0.39 vs 0.46 nM, respectively), but infliximab-TNF complex elimination was slower in Crohn's disease than in rheumatoid arthritis (kint = 0.024 vs 0.061 day-1, respectively). Terminal elimination half-lives were 13.5, 21.5 and 16.5 days for rheumatoid arthritis, Crohn's disease and ankylosing spondylitis, respectively. Estimated amounts of free target were close to baseline values before the next infusion suggesting that TNF-α inhibition may not be sustained over the entire dose interval. The present study is the first to quantify the influence of target antigen dynamics on infliximab pharmacokinetics. Target-mediated elimination of infliximab may be complex, involving a multi-scale turnover of TNF-α, especially in patients with Crohn's disease. Additional clinical studies are warranted to further evaluate and fine-tune dosing approaches to ensure sustained TNF-α inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.