Abstract

A simple closed curve in the real projective plane is called anti-convex if for each point on the curve, there exists a line which is transversal to the curve and meets the curve only at that given point. Our main purpose is to prove an identity for anti-convex curves that relates the number of independent (true) inflection points and the number of independent double tangents on the curve. This formula is a refinement of the classical Möbius theorem. We also show that there are three inflection points on a given anti-convex curve such that the tangent lines at these three inflection points cross the curve only once. Our approach is axiomatic and can be applied in other situations. For example, we prove similar results for curves of constant width as a corollary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.