Abstract

The singular nature of the UTD (uniform geometrical theory of diffraction) subreflector scattered field at the vicinity of the main reflector edge (for a high-grain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the GO (geometrical optics) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi -integral, whereas the theta -integral is carried out numerically. Computational results from UTD and PO (physical optics) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO/sub theta /GO/sub phi / technique can be used to study the spillover or noise temperature characteristics of a high-grain reflector antenna efficiently and accurately. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.