Abstract

The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call