Abstract

We consider higher-derivative quantum gravity where renormalization group improved effective action beyond one-loop approximation is derived. Using this effective action, the quantum-corrected FRW equations are analyzed. De Sitter universe solution is found. It is demonstrated that such de Sitter inflationary universe is instable. The slow-roll inflationary parameters are calculated. The contribution of renormalization group improved Gauss-Bonnet term to quantum-corrected FRW equations as well as to instability of de Sitter universe is estimated. It is demonstrated that in this case the spectral index and tensor-to-scalar ratio are consistent with Planck data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call