Abstract

We consider a subclass of Horndeski theories for studying cosmic inflation. In particular, we investigate models of inflation in which the derivative self-interaction of the scalar field and the non-minimal derivative coupling to gravity are present in the action and equally important during inflation. In order to control contributions of each term as well as to approach the single-term limit, we introduce a special relation between the derivative interaction and the coupling to gravity. By calculating observable quantities including the power spectra and spectral tilts of scalar and tensor perturbation modes, and the tensor-to-scalar ratio, we found that the tensor-to-scalar ratio is suppressed by a factor of (1+1/gamma ), where gamma reflects the strength of the derivative self-interaction of the inflaton field with respect to the derivative coupling gravity. We placed observational constraints on the chaotic and natural inflation models and showed that the models are consistent with the current observational data mainly due to the suppressed tensor-to-scalar ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.