Abstract

A mathematical model for large amplitude wave propagation in a thin walled distensible tube is developed. The tube wall is considered as a membranic shell made of an incompressible, non-linear viscoelastic material with cylindrical orthotropy. The fluid is regarded as incompressible and inviscid and the flow is quasi-one-dimensional. The case of a pressure step applied at one end of a uniform straight tube is solved as an example. The system of partial differential equations, describing the motions of the fluid and the wall, are integrated numerically by using a two-step explicit scheme. Flow and deformation variables as well as the wave velocity are determined in time and space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call