Abstract
BackgroundPeripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). Methods12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. ResultsThe FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1β, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1β and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. ConclusionsInflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood–brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.