Abstract
The respiratory epithelium is lined by a tightly balanced fluid layer that allows normal O2 and CO2 exchange and maintains surface tension and host defense. To maintain alveolar fluid homeostasis, both the integrity of the alveolar–capillary barrier and the expression of epithelial ion channels and pumps are necessary to establish a vectorial ion gradient. However, during pulmonary infection, auto- and/or paracrine-acting mediators induce pathophysiological changes of the alveolar–capillary barrier, altered expression of epithelial Na,K-ATPase and of epithelial ion channels including epithelial sodium channel and cystic fibrosis membrane conductance regulator, leading to the accumulation of edema and impaired alveolar fluid clearance. These mediators include classical pro-inflammatory cytokines such as TGF-β, TNF-α, interferons, or IL-1β that are released upon bacterial challenge with Streptococcus pneumoniae, Klebsiella pneumoniae, or Mycoplasma pneumoniae as well as in viral infection with influenza A virus, pathogenic coronaviruses, or respiratory syncytial virus. Moreover, the pro-apoptotic mediator TNF-related apoptosis-inducing ligand, extracellular nucleotides, or reactive oxygen species impair epithelial ion channel expression and function. Interestingly, during bacterial infection, alterations of ion transport function may serve as an additional feedback loop on the respiratory inflammatory profile, further aggravating disease progression. These changes lead to edema formation and impair edema clearance which results in suboptimal gas exchange causing hypoxemia and hypercapnia. Recent preclinical studies suggest that modulation of the alveolar–capillary fluid homeostasis could represent novel therapeutic approaches to improve outcomes in infection-induced lung injury.
Highlights
The major task of the respiratory tract is the exchange between inhaled atmospheric oxygen and carbon dioxide carried by the bloodstream, which is ensured by a thin but large surface area formed by type I and type II alveolar epithelial cells
The apical amiloride-sensitive epithelial sodium channel (ENaC) and the amiloride-insensitive cyclic nucleotide-gated cation channel (CNG) acting together with the basolaterally located Na,K-ATPase (NKA) promote transcellular sodium transport [3], which is accompanied in the alveolar epithelium by chloride uptake from the apical cystic fibrosis membrane conductance regulator (CFTR) [4]
Pulmonary infections commonly disturb ion and fluid homeostasis, resulting in abnormal changes of airway surface liquid (ASL), alveolar lining fluid (AFL), and alveolar edema formation. Both viral and bacterial pathogens are common causative agents for acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), which are characterized by a widespread inflammation within the lungs, extensive flooding of the alveolar airspace with protein-rich exudate fluid and impaired gas exchange leading to respiratory failure and resulting in mortality rates of 40–58% [10, 11]
Summary
The major task of the respiratory tract is the exchange between inhaled atmospheric oxygen and carbon dioxide carried by the bloodstream, which is ensured by a thin but large surface area formed by type I and type II alveolar epithelial cells Both the upper and the lower respiratory epithelia are lined by a thin (0.2 μM) aqueous layer [1], referred to as airway surface liquid (ASL) and alveolar lining fluid (AFL), respectively. Pulmonary infections commonly disturb ion and fluid homeostasis, resulting in abnormal changes of ASL, AFL, and alveolar edema formation Both viral and bacterial pathogens are common causative agents for acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), which are characterized by a widespread inflammation within the lungs, extensive flooding of the alveolar airspace with protein-rich exudate fluid and impaired gas exchange leading to respiratory failure and resulting in mortality rates of 40–58% [10, 11]. We will highlight advances in the understanding of how inflammatory responses in pulmonary infection affect ion transport, including common patterns and unique pathways activated by different respiratory pathogens, and how these mechanisms might be modulated to improve the outcomes of ARDS patients
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.